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Abstract
  One of the main challenges of securing effective computation in diverse network devices tends to be a limitation of their 

computational power. Server assisted signature scheme was recently presented as nonrepudiation service for mobile and 
constrained devices. They all tend to have a feature in common: limited computational capabilities and equally limited power 
(as most operate on batteries). The scheme suffered with high storage requirements and memory requirements for the mobile 
clients. This makes them ill-suited for public key signatures. This paper examines practical and conceptual implications of 
using Server-Aided Signatures (SAS) for these devices. SAS is a signature method that relies on partially-trusted servers for 
generating (normally expensive) public key signatures for regular users. Although the primary goal is to aid small, resource-
limited devices in signature generation, SAS also fast certificate revocation, signature causality and with reliable 
timestamping.

Keywords: Public key infrastructure; Digital signature; Certificate authority.

1.  Introduction

  Digital signature schemes are among the most 
fundamental and useful inventions of modern 
cryptography. In such schemes, each user generates a 
(private) signing key and a (public) verification key. A 
user signs a message using his private signing key, and 
anyone can authenticate the signer and verify the 
message – using the signer's public verification key. A 
signature scheme is considered to be secure if 
signatures on new messages cannot be forged by any 
attacker who knows the user's public key, but not his 
private key. Computers and communication 
networks have become an integral part of many 
people's daily lives. Systems to facilitate commercial 
and other transactions have been built on top of large 
open computer networks. Two crucial features of 
digital signatures are non-repudiation and strong 
authentication of both origin and data. While digital 
signatures are rapidly becoming ubiquitous, one of 
the major recent trends in computing has been 
towards so-called smart devices, such as PDAs, cell 
phones and sensors. Although these devices come in 
many shapes and sizes and are used for a variety of 
purposes, they tend to have a feature in common: 
limited computational capabilities and equally limited 

power (as most operate on batteries). This makes 
them ill-suited for complex cryptographic 
computations such as large number arithmetic 
present in virtually all public key constructs. In fact, 
the computation power disparity between the smart  
devices and the adversary becomes even larger.
  At the same time, increased use of digital 

signatures accentuates the need for effective 
revocation of cryptographic credentials and 
certificates, which has been an issue for a long time. 
However, now the problem is becoming more 
evident, e.g., the recent Verisign fiasco where a wrong 
certificate was issued (ostensibly to Microsoft) and its 
subsequent revocation were both slow and painful. 
Furthermore, current CRL-based revocation 
methods scale poorly and are not widely used in 
practice. Effective revocation is not only useful, but 
vital in some organizational settings (e.g., government 
and military) where digital signatures are used on 
important electronic documents and in accessing 
critical resources.
  Consider a situation where a trusted user (Alice) 

does something that warrants immediate revocation 
of her security privileges. Alice might be fired, 
transferred or her private key has been compromised. 
Ideally (immediately following revocation) no one 
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should be able to perform any cryptographic 
operations involving Alice's private key. In addition, 
when a cryptographic certificate is revoked (or simply 
expires), to establish the validity of digital signatures 
generated prior to revocation (or expiration) becomes 
a hard issue, due to the difficulty in determining the 
exact generation time. Albeit a secure time stamping 
service may provide a means of distinguishing 
between pre- and post-revocation signature, it hasn't 
been widely adopted due to its well- known 
prohibitive cost.
  The basic idea of Server-Aided Signatures was 

introduced as a non-repudiation technique. Its goals 
are three-fold:

Ÿ Assist small, limited-power devices in 
computing digital signatures

Ÿ Provide fast revocation of signing capability
Ÿ Limit damage from potential compromise

  The signature method (SAS) discussed here is 
based largely on a weak non-repudiation technique 
due to Asokan et al. (1999). The most notable feature 
of the SAS method is the introduction of an online 
partially trusted entity. Specifically, each SAS 
signature is generated with the aid of a partially-
trusted server called SEM (short for Security 
Mediator). Informally, the basic SAS signature 
protocol is as follows:

Ÿ First, a prospective signer (Alice) contacts her 
SEM and provides the data to be signed as well 
as a one-time token.

Ÿ SEM checks Alice's certificate validity and, if 
not revoked, computes a half-signature over 
the data as well as other parameters (including 
the one-time token). SEM then returns the 
results to Alice. Alice verifies SEM's half-
signature and produces her own half-
signature. Put together, the two respective 
half-signatures constitute a regular, full SAS 
signature. This signature is accompanied by 
SEM's and Alice's certificates.

  The two half-signatures are inter-dependent and 
each is worthless in and of itself. This is despite the 
SEM's half-signature being a traditional public key 
signature: in the context of SAS, a traditional 
signature computed by a SEM is not, by itself, a SAS 
signature. The half-signature computed by a user 
(Alice, in our example) is actually a one-time signature 
(Shamir and Tauman, 2001) over the other half. Note 
that computing one-time signature requires little 
computation resource. Verifying a SAS signature is 

easy: after obtaining the signature, verifier (Bob) first 
verifies the correctness of SEM's public key signature, 
then checks the link between two halves i.e. verifies 
user's (Alice's) one-time signature.

2.  Related works

  A well-known technique which is online/offline 
signatures [1], in this scheme the signing of the 
message is broken into phases. The first phase is 
offline. Though it requires a moderate amount of 
computation; it presents an advantage in that it can be 
performed leisurely, before the message to be signed is 
even known. The second phase is online. It starts after 
the message becomes known, and utilizes the pre-
computation of the first phase and is much faster. A 
general construction which transforms any digital 
signature scheme to an online/offline signature 
scheme is presented entailing a small overhead. For 
each message to be signed, the time required for the 
offline phase is essentially the same as in the 
underlying signature scheme; the time required for 
the online phase is essentially negligible. The time 
required for the verification is essentially the same as 
in the underlying signature scheme (Shamir and 
Tauman, 2001). 
  In this paper, the signature is based on factoring 

and DES. In online, DES computation is used because 
it is ideally suited for electronic smart cards. All the 
costly computations are performed in the offline stage 
while the time for the online stage remains essentially 
unchanged. In some cases the transformed signature 
scheme is invulnerable to chosen message attack even 
if underlying digital signature scheme is not. It allows 
proving that the existence of signature schemes which 
are unforgeable by known message attack is a 
sufficient condition for the existence of signature 
schemes which are unforgeable by chosen message 
attack. It requires a lot of power for offline 
computation and this takes a longer time to compute 
(Asokan et al., 1997).
  This provides against denial by one of the entities 

involved in communication of having participated in 
all or part of the communication. Actually, non-
repudiation prevents either sender or receiver from 
denying a transmitted message. Thus, when a message 
is sent, the receiver can prove that the alleged sender in 
fact sent the message. Similarly, when a message is 
received, the sender can prove that the alleged receiver 
in fact received the message.
  This is based on one-way hash functions and 

traditional digital signatures. It is efficient in terms of 
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computation, communication and storage costs. The 
existing techniques for non-repudiation are based 
primarily on either symmetric or asymmetric crypto-
graphy. Secure symmetric techniques are computa-
tionally more efficient but require unconditional 
trust in third parties (Mundadugu et al 2001). 
Unconditional means that if such a third party cheats, 
the victim cannot prove this to the arbiter. 
Asymmetric techniques are computationally less 
efficient, but can be constructed in a way that allows 
one to prove cheating by the third parties involved. 
Server supported signature for non-repudiation of 
origin operates in one way hash function. This 
function operates on arbitrary length inputs to 
produce a fixed\ length value. A one-way hash 
function is said to be collision resistance if it is 
computationally infeasible to fine any two string. Full 
trusted usually implies poor scalability. Therefore the 
fully trusted server being a single point of failure in 
terms of security and availability becomes an 
attractive target for various attacks in many 
applications, it is impractical to establish a centralized 
fully trusted entity. A fully trusted server actually 
puts the users' security at risk as server compromise 
exposes all users' secret information.
  There have been explosions in the number of 

applications for handheld devices. Many of these 
applications come with a remote device over an 
authenticated channel. Examples of applications 
include a wireless purchase using a cell phone, remote 
secure synchronization with a PDA, using a handheld 
device as an authentication token and handheld 
electronic wallets. According to authors, generating a 
1024bit RSA key on handheld devices like palm-pilot 
can take as long as 15 minutes (Naor and Nissim, 
1998). The device locks up while generating the key 
and is inaccessible to users. For wireless devices 
battery life time is a concern. The application may 
need to generate a key before it can function. 
Generating the key while the user is traveling will 
lock up the cell phone for some time and may 
completely drain the batteries. The obvious solution 
here is to allow the handheld to communicate with a 
desktop or server and have the server generate the 
key. The key can then be downloaded onto the 
handheld. The problem with this approach is that the 
server learns the user private key. Consequently, the 
server must be trusted by the user. Generating an 
unbalanced RSA key with the help of untrusted 
servers (Goodrich et al., 2001). At the end of the 
computation the servers should know nothing about 
the key they help generate. The assumption is that 
those two servers cannot exchange information with 

each other. This ensures that an attacker cannot 
eavesdrop on the network and obtain the information 
being sent to both servers. This approach limits 
mobility of the handheld application since users can 
only generate a key while communicating with their 
home domain. Server assisted one time signature 
scheme was recently presented as a non-repudiation 
service for mobile and constrained devices. However, 
the scheme suffered with high storage requirements 
for the virtual server and high memory requirements 
for the mobile client. This scheme significantly 
reduced virtual server storage requirements as well as 
mobile client memory requirements (Lamport , 
1981). More precisely, the virtual server storage 
requirements in this scheme are reduced by a factor of 
more than 80 compared to the original scheme. 
Further, memory requirements for the mobile client 
are reduced by a factor of more than 130. This is done 
by generating various quantities pseudo randomly 
and storing just their cryptographic hash (instead of 
storing them fully) wherever possible, while still 
being able to perform dispute resolution. To have 
some legal significance, these transactions should have 
some form of non-repudiation (Goyal, 2004). This is 
usually provided through a digital signature. 
However, digital signature generation and even 
verification are known to be computationally 
intensive processes. It is not always practical to 
implement public key cryptography and hence digital 
signatures on a mobile device having limited 
computational resources and memory. The main 
problem here is high storage requirements for the 
verifiable server and memory requirement for the 
mobile clients. It is easy for the third party to cheat in 
this setting since it could sign any message on behalf of 
the user.

 3. Background

A. Model and notation

We distinguish among 3 types of entities: 
Ÿ Regular Users – entities who generate and 

verify SAS signatures.
Ÿ Security Mediators (SEMs) –partially-trusted 

entities assisting regular users in generating 
SAS signatures.

Ÿ Certification Authorities (CAs) – trusted 
offline entities that issue certificates and link 
the identities of regular users with SEMs. 
SEMs and CAs are verifiable third parties 
from the users' point of view.
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  All participants agree on a collision-resistant one-
way hash function family H and a digital signature 
scheme. In SAS, the latter is fixed to be the RSA 
scheme (Naor and Yung, 1989, Boneh et al., 2001) 

SAS description

  The SAS system consists of four component 
algorithms: Setup, Sign, Verify, and Renew. Setup 
initializes the settings for SEMs and regular users; Sign 
computes SAS signatures on given messages, which 
can later be validated by running Verify. Handoff 
algorithm allows a regular user to switch from one 
SEM to another (Ding et al., 2001). Renew algorithm 
allows a user to use new one time private keys (a hash 
chain as shown below) without applying for a new 
certificate.

A. Setup

  The system administrator sets up a CA and 
initializes a system-wide cryptographic setting. 
Specifically, the administrator selects a collision-
resistant oneway hash function H( ) for the users. The 
choices of H( ) include SHA-224 and SHA-256, which 
are massumed to be secure. A public key signature 
scheme, which is secure against adaptive chosen 
message attacks, is selected for SEMs. In order to 
minimize computation overhead for regular users, the 
chosen public key signature scheme should be 
efficient for verifiers. (This is because, as will be seen 
later, verification is done by regular users, whereas, 
signing is done by much more powerful SEMs.) 
Therefore, choose RSA signature scheme (Askan et al 
1997,Shamir and Tauman, 2001) with a small public 
exponent, such as 3 and 65,537 for SEMs. 
  To become a SAS signer, Ui customizes H( ) into 

Hui ( ). In essence, Hui ( ) is a keyed hash (e.g., 
Mackenzie and Reiter, 2001) with a known key set to 
the identity of the signer. Then, Ui generates a secret 
random element SK0 i and chooses n as the number of 
messages to sign. Starting with this value, Ui 
computation is as follow:

i n-1 n
{ SK0  , SK1i ,….., Sk  , SK  }i i

                    where
j j-1 j 0SK  = H  (SK ) = H  (SK  ) for 1 < j < ni ui ¡ ui i

i 1 n-1 nThe hash chain of { SK  , SK  ,….., Sk  , SK  } is called 0 i i i

Ui's key chain. Each SKj i , for 0 < j < n is Ui's j-th 
(one-time) private key. It subsequently enables Ui to 
produce (n-1) SAS signatures, since as shown below,  

each of them will be used only once. The first value, 
iSK , is referred to as U s seed private key. The last 0 i'

n
value, SK  , together with n, are referred to as U  root i i's

public key Pk .i

  Each SEM initializes its own secret/public RSA 
key-pair (d , e ) of sufficient length. (We use the sem sem

notation [x]dsem to denote SEM's signature on string 
x). Each CA also has its own key-pair much like any 
traditional CA. In addition to its usual role of issuing 
and revoking certificates a CA also assign associations 
between users and SEMs by listing SEMs in users' 
certificates. Each user has a unique Registration SEM 
in her home domain. Roaming users are allowed to 
have associations with alternative SEMs in other 
domains. One SEM serves for a multitude of users. 
The number and placement of SEMs are expected in 
an organizational network to closely resemble that of 
OCSP Validation Agents (Vas) (Kaufmann et al., 
1995). In order to obtain a SAS certificate Cert , U  i i

composes a certificate request and submits it to the 
CA via some (usually off-line) channel. U s SAS i'

certificate has, for the most part, the same format as 
any other public key certificate; it includes values 
such as the holder's distinguished name, 
organizational data, expiration/validity dates, serial 
number, and so forth. Additionally, a SAS certificate 
contains two other fields: 

n
1.  U s root public key PK , i.e < SK  , n >i' i i

2.  A pair of distinguished name and certificate serial 
  number for each SEM associated with Ui. Once 
  issued, U s SAS certificate Certi can be made i'

  publicly available via a directory service such as 
  LDAP.

B.    SAS signature protocol

  To get the first signature from SEM, U  needs to i

register herself to her assigned SEM either off- or on-
line. In the off-line case, SEM obtains U s SAS i'

certificate via manual (local or remote) installation by 
an administrator or by fetching it from the directory 
service. To register on-line, U  simply includes her i

SAS certificate as an optional field in the initial SAS 
signature request to the SEM. Before processing the 
request as described above, the SEM checks if the same 
certificate is already stored. If not, it installs in the 
certificate database and creates a new user entry. To 
run the same protocol with an alternative SEM, U  i
must run. In the initial run of the protocol, the 
signature counter k is set to n-1. Both SEM and Ui 
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Algorithm SAS.sign   (executed by User U  i
and SEM)

SEM Ui
SEM 

k  (1)         U  k, Ski, m i

k dsem             (2 )     [ U  k, SK  ]  i, m i

k k dsem(3) Issue < SK , [ U  k, SK  ]  > as the i i, m i

final SAS signature

Step 2. On receiving U 's request, SEM obtains Certi i

(either from the request or from local storage) and 
checks its status. If revoked, SEM replies with an error 
message and halts the protocol. Otherwise, SEM 
compares the signature counter in the request to its 
own signature counter. In case of a mismatch, SEM 
replies to U  with the half-signature produced in the i

last protocol run and aborts. (Note that SEM keeps a 
record of all previously generated half-signatures) 
Then, SEM proceeds to verify the received k-th 

k
“private” key (SK  ) with U 's root public key in Certi. i i

kSpecifically, SEM checks that Hn-kui (SK ) = PK . In i i

case of a mismatch, SEM replies to U  with the last i

recorded half-signature and aborts the protocol.
  Otherwise, SEM signs the requested message with 

its RSA private key d  using RSASSA-PSS scheme sem

specified in Asokan et al. 1997. For simplicity, the 
k dsemresult is denoted as SIG  = [Cert , m, k, SK ] . Other i i i

attributes may also be included in SEM's half-
signature, e.g., a timestamp. SEM decrements U  's i

signature counter, records the half-signature and 
returns the latter to U .i
  In the above, SEM assures that for a given SAS 

certificate exactly one signature is created for each 
kSK . This property is referred to  to as the SAS i

Invariant. This concept enables non-repudiation for 

SAS signatures and protects users from being framed 
by SEMs. 

Step 3. U  (who is assumed to be in possession of 

SEM's certificate) verifies SEM's half-signature, 
records it and decrements her signature counter. If 
SEM's half-signature fails verification or its attributes 
are wrong (e.g., it signs a different message than m or 

includes an incorrect signature counter j ≠  k), U  

aborts the protocol and concludes that a hostile attack 
has occurred. In the end, U 's SAS signature on i

message m has the following format:
k

[Cert , m, k, SK ] , SKi i

k-1
  The second part, namely SK  is U 's half-i i

signature. As mentioned earlier, it is actually a one-
k-1 ktime signature since Hui (SK  ) = SK i. Note that U  i i i

must use her one-time keys strictly in the reverse 
order of key generation, i.e. starting from SKn-1ii, 

n-2 n-3SK i, SK i   and so on. In particular, U  must not i i i
k-1

request a SEM half-signature using SK i unless, in the i

last protocol run, she obtained SEM's half-signature 
kcontaining Sk i i

C.  SAS signature verification

  SAS signature verification comes in two flavors: 
light and full. The particular choice depends on the 
verifier's trust model. If a verifier trusts a SEM to 
honestly check user requests and verify user 
certificate status, he can choose light verification. 
Otherwise, he chooses full verification.

Light verification involves the following steps:
Ÿ  Obtain and verify Certsem;

Ÿ  Verify SEM's RSA half-signature: 
k dsem

    [Cert , m, k, SK i  ]i i

Ÿ  Verify U 's half-signature: i
k-1 k

    H (SK  ) = Sk i ui i i

Full verification requires, in addition:
Ÿ  Verify Cert  and obtain n from Cert ;i i

Ÿ  Check that k < n, otherwise abort;
Ÿ  Verify U  root public key:i

n-k k-1 n    H  (SK  ) = Sk .ui i i

  Note that light verification does not involve 
checking U 's SAS certificate. Although this may seem i

counter-intuitive, but SAS signature format (actually 
SEM's half-signature) already includes Cert  as i

assigned attribute. Therefore, for a verifier who trusts 
the SEM, step 2 above implicitly verifies Cert . It is i

i

i

dsem k-1

i

Fig. 1: SAS signature algorithm.
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consistently maintain the counter by decrementing it 
after each run. The protocol is illustrated in Figure 1.

Step 1. U  starts by sending a request containing: i
k{U ,m, k, SK } to its assigned SEM. If for privacy i i

reasons U  does not wish to reveal the message to the i

SEM, m can be replaced with h(m). U  may optionally i

enclose her SAS certificate.
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Table 1
Plain RSA signature timing (ms)

Processor        Key length (bits)
                       1024         2048      4096       8192

Table 2 
SAS Signature Timing (ms)

Processor        Key length (bits)
                          1024         2048     4096        8192

12490.0
3873.3
2617.5
2835.0

2143.4
2070.2
2059.6
2061.0

1741.7    
562.8    
377.8    
401.2    

322.5        
302.0        
377.8        
401.2        

252.7  
85.6       
55.7       
58.7       

52.4       
46.3      
45.1      
45.4      

40.3         
14.6         
9.2         
9.3         

13.3            
9.1            
8.5            
8.5            

PI-233MHz       
PIII-500MHz     
PIII 700MHz     
PIV-1.2MHz     

PI-233MHz       
PIII-500MHz    
PIII 700MHz    
PIV-1.2MHz    

easy to see that, owing to the trusted nature of a SEM 
and the SAS Invariant, light verification is usually 
sufficient. However, if a stronger property (such as 
non-repudiation) is desired, full verification may be 
used.

D. SAS renewal

  A renewal is needed when the messages to sign 
outnumber the length of the key chain, or the states 
between SEM and the user is inconsistent due to 
attacks or system failures. The renewal protocol 
allows a user to use a new chain of private keys 
without applying for a new certificate, on the 
condition that her seed private key is not 
compromised. Suppose user U  is currently using the i

0
hash chain seeded with SK  and the SEM is expecting i

k 0SK  . To shift to a new chain seeded with SK  , U  and i i i

SEM run the following protocol:

Step 1: In order to sign w messages in the future, U  i
0

generates a new hash chain of length w + 1: SK ……. i
w 0 wSK  and computes α = Hui (SK  ,SK ). In the i i i

protocol message, REN(U ), a pre-defined macro i

message indicating U 's hash-chain renewal request; ω i
w kthe index of new root public key SK  , SK  is a current i i

hash token to use in the current hash chain;  α serves 
as a commitment to the seed private key of the old 
chain and the root public key of the new chain.
  In this scheme is design to help solve majority of 

the problem which is faced by smart devices. This 
scheme provides a solution to the source 
authentication problem under the assumption that 
the sender and the receiver are loosely time 
synchronized. SAS protocol has the following pro-
perties; low computation overheads, low commu-
nication overheads, if a packet arrives in time the 
receiver can verify its authenticity. The two half 
signatures are interdependent, so each is worthless 
and of itself.

kStep 2: SEM checks the authenticity of SK ) and U 's i i

certificate status as in SAS signature protocol. If the 
renewal is approved, SEM returns a signature on the 
request as a normal SAS signature. Meanwhile, the 
state is updated so that any future SAS signature 
requests using this chain will be rejected and an attack 
alarm should be signaled.

Step 3: If SEM's signature in the second round is 
w 0verified valid, U  reveals to SEM the SK  and Ski i i

4.  Conclusion

  The above protocol is implemented in java and it 
is run on various Speed of Pentium processors. All the 
experiment was conducted over 100Mbps Ethernet 
LAN in a Lab, run a number of tests with various 
hardware platforms and different RSA key sizes and 
also implement this protocol in Email system, where 
mail will be encrypted and sent. When ready to send, 
the user's SAS certificate and extracts the SEM 
address. SAS-signed emails can be verified by any 
S/MIME capable email client such as Netscape or 
Microsoft.  The result obtained after running the SAS 
protocol and RSA on different Systems have been 
presented. 
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