
Server-aided Public Key Signatures for Diverse Network Devices

1 1 2William Asiedu , K. Osei-Boateng , Rajan John
1Dept.of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi.

E-mail: asiedu2@gmail.com, boat.soe@knust.edu.gh
2Computer Sci. & Engineering Dept, All Nations University College, Koforidua.

E-mail: rajan.john@allnationuniversity.org

Abstract
 One of the main challenges of securing effective computation in diverse network devices tends to be a limitation of their

computational power. Server assisted signature scheme was recently presented as nonrepudiation service for mobile and
constrained devices. They all tend to have a feature in common: limited computational capabilities and equally limited power
(as most operate on batteries). The scheme suffered with high storage requirements and memory requirements for the mobile
clients. This makes them ill-suited for public key signatures. This paper examines practical and conceptual implications of
using Server-Aided Signatures (SAS) for these devices. SAS is a signature method that relies on partially-trusted servers for
generating (normally expensive) public key signatures for regular users. Although the primary goal is to aid small, resource-
limited devices in signature generation, SAS also fast certificate revocation, signature causality and with reliable
timestamping.

Keywords: Public key infrastructure; Digital signature; Certificate authority.

1. Introduction

 Digital signature schemes are among the most
fundamental and useful inventions of modern
cryptography. In such schemes, each user generates a
(private) signing key and a (public) verification key. A
user signs a message using his private signing key, and
anyone can authenticate the signer and verify the
message – using the signer's public verification key. A
signature scheme is considered to be secure if
signatures on new messages cannot be forged by any
attacker who knows the user's public key, but not his
private key. Computers and communication
networks have become an integral part of many
people's daily lives. Systems to facilitate commercial
and other transactions have been built on top of large
open computer networks. Two crucial features of
digital signatures are non-repudiation and strong
authentication of both origin and data. While digital
signatures are rapidly becoming ubiquitous, one of
the major recent trends in computing has been
towards so-called smart devices, such as PDAs, cell
phones and sensors. Although these devices come in
many shapes and sizes and are used for a variety of
purposes, they tend to have a feature in common:
limited computational capabilities and equally limited

power (as most operate on batteries). This makes
them ill-suited for complex cryptographic
computations such as large number arithmetic
present in virtually all public key constructs. In fact,
the computation power disparity between the smart
devices and the adversary becomes even larger.
 At the same time, increased use of digital

signatures accentuates the need for effective
revocation of cryptographic credentials and
certificates, which has been an issue for a long time.
However, now the problem is becoming more
evident, e.g., the recent Verisign fiasco where a wrong
certificate was issued (ostensibly to Microsoft) and its
subsequent revocation were both slow and painful.
Furthermore, current CRL-based revocation
methods scale poorly and are not widely used in
practice. Effective revocation is not only useful, but
vital in some organizational settings (e.g., government
and military) where digital signatures are used on
important electronic documents and in accessing
critical resources.
 Consider a situation where a trusted user (Alice)

does something that warrants immediate revocation
of her security privileges. Alice might be fired,
transferred or her private key has been compromised.
Ideally (immediately following revocation) no one

57

International Journal of Technology and Management Research 1 (2012) 57-63

Available online at www.koforiduapoly.edu.gh International Journal
of Technology and

Management Research

should be able to perform any cryptographic
operations involving Alice's private key. In addition,
when a cryptographic certificate is revoked (or simply
expires), to establish the validity of digital signatures
generated prior to revocation (or expiration) becomes
a hard issue, due to the difficulty in determining the
exact generation time. Albeit a secure time stamping
service may provide a means of distinguishing
between pre- and post-revocation signature, it hasn't
been widely adopted due to its well- known
prohibitive cost.
 The basic idea of Server-Aided Signatures was

introduced as a non-repudiation technique. Its goals
are three-fold:

Ÿ Assist small, limited-power devices in
computing digital signatures

Ÿ Provide fast revocation of signing capability
Ÿ Limit damage from potential compromise

 The signature method (SAS) discussed here is
based largely on a weak non-repudiation technique
due to Asokan et al. (1999). The most notable feature
of the SAS method is the introduction of an online
partially trusted entity. Specifically, each SAS
signature is generated with the aid of a partially-
trusted server called SEM (short for Security
Mediator). Informally, the basic SAS signature
protocol is as follows:

Ÿ First, a prospective signer (Alice) contacts her
SEM and provides the data to be signed as well
as a one-time token.

Ÿ SEM checks Alice's certificate validity and, if
not revoked, computes a half-signature over
the data as well as other parameters (including
the one-time token). SEM then returns the
results to Alice. Alice verifies SEM's half-
signature and produces her own half-
signature. Put together, the two respective
half-signatures constitute a regular, full SAS
signature. This signature is accompanied by
SEM's and Alice's certificates.

 The two half-signatures are inter-dependent and
each is worthless in and of itself. This is despite the
SEM's half-signature being a traditional public key
signature: in the context of SAS, a traditional
signature computed by a SEM is not, by itself, a SAS
signature. The half-signature computed by a user
(Alice, in our example) is actually a one-time signature
(Shamir and Tauman, 2001) over the other half. Note
that computing one-time signature requires little
computation resource. Verifying a SAS signature is

easy: after obtaining the signature, verifier (Bob) first
verifies the correctness of SEM's public key signature,
then checks the link between two halves i.e. verifies
user's (Alice's) one-time signature.

2. Related works

 A well-known technique which is online/offline
signatures [1], in this scheme the signing of the
message is broken into phases. The first phase is
offline. Though it requires a moderate amount of
computation; it presents an advantage in that it can be
performed leisurely, before the message to be signed is
even known. The second phase is online. It starts after
the message becomes known, and utilizes the pre-
computation of the first phase and is much faster. A
general construction which transforms any digital
signature scheme to an online/offline signature
scheme is presented entailing a small overhead. For
each message to be signed, the time required for the
offline phase is essentially the same as in the
underlying signature scheme; the time required for
the online phase is essentially negligible. The time
required for the verification is essentially the same as
in the underlying signature scheme (Shamir and
Tauman, 2001).
 In this paper, the signature is based on factoring

and DES. In online, DES computation is used because
it is ideally suited for electronic smart cards. All the
costly computations are performed in the offline stage
while the time for the online stage remains essentially
unchanged. In some cases the transformed signature
scheme is invulnerable to chosen message attack even
if underlying digital signature scheme is not. It allows
proving that the existence of signature schemes which
are unforgeable by known message attack is a
sufficient condition for the existence of signature
schemes which are unforgeable by chosen message
attack. It requires a lot of power for offline
computation and this takes a longer time to compute
(Asokan et al., 1997).
 This provides against denial by one of the entities

involved in communication of having participated in
all or part of the communication. Actually, non-
repudiation prevents either sender or receiver from
denying a transmitted message. Thus, when a message
is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is
received, the sender can prove that the alleged receiver
in fact received the message.
 This is based on one-way hash functions and

traditional digital signatures. It is efficient in terms of

58

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

computation, communication and storage costs. The
existing techniques for non-repudiation are based
primarily on either symmetric or asymmetric crypto-
graphy. Secure symmetric techniques are computa-
tionally more efficient but require unconditional
trust in third parties (Mundadugu et al 2001).
Unconditional means that if such a third party cheats,
the victim cannot prove this to the arbiter.
Asymmetric techniques are computationally less
efficient, but can be constructed in a way that allows
one to prove cheating by the third parties involved.
Server supported signature for non-repudiation of
origin operates in one way hash function. This
function operates on arbitrary length inputs to
produce a fixed\ length value. A one-way hash
function is said to be collision resistance if it is
computationally infeasible to fine any two string. Full
trusted usually implies poor scalability. Therefore the
fully trusted server being a single point of failure in
terms of security and availability becomes an
attractive target for various attacks in many
applications, it is impractical to establish a centralized
fully trusted entity. A fully trusted server actually
puts the users' security at risk as server compromise
exposes all users' secret information.
 There have been explosions in the number of

applications for handheld devices. Many of these
applications come with a remote device over an
authenticated channel. Examples of applications
include a wireless purchase using a cell phone, remote
secure synchronization with a PDA, using a handheld
device as an authentication token and handheld
electronic wallets. According to authors, generating a
1024bit RSA key on handheld devices like palm-pilot
can take as long as 15 minutes (Naor and Nissim,
1998). The device locks up while generating the key
and is inaccessible to users. For wireless devices
battery life time is a concern. The application may
need to generate a key before it can function.
Generating the key while the user is traveling will
lock up the cell phone for some time and may
completely drain the batteries. The obvious solution
here is to allow the handheld to communicate with a
desktop or server and have the server generate the
key. The key can then be downloaded onto the
handheld. The problem with this approach is that the
server learns the user private key. Consequently, the
server must be trusted by the user. Generating an
unbalanced RSA key with the help of untrusted
servers (Goodrich et al., 2001). At the end of the
computation the servers should know nothing about
the key they help generate. The assumption is that
those two servers cannot exchange information with

each other. This ensures that an attacker cannot
eavesdrop on the network and obtain the information
being sent to both servers. This approach limits
mobility of the handheld application since users can
only generate a key while communicating with their
home domain. Server assisted one time signature
scheme was recently presented as a non-repudiation
service for mobile and constrained devices. However,
the scheme suffered with high storage requirements
for the virtual server and high memory requirements
for the mobile client. This scheme significantly
reduced virtual server storage requirements as well as
mobile client memory requirements (Lamport ,
1981). More precisely, the virtual server storage
requirements in this scheme are reduced by a factor of
more than 80 compared to the original scheme.
Further, memory requirements for the mobile client
are reduced by a factor of more than 130. This is done
by generating various quantities pseudo randomly
and storing just their cryptographic hash (instead of
storing them fully) wherever possible, while still
being able to perform dispute resolution. To have
some legal significance, these transactions should have
some form of non-repudiation (Goyal, 2004). This is
usually provided through a digital signature.
However, digital signature generation and even
verification are known to be computationally
intensive processes. It is not always practical to
implement public key cryptography and hence digital
signatures on a mobile device having limited
computational resources and memory. The main
problem here is high storage requirements for the
verifiable server and memory requirement for the
mobile clients. It is easy for the third party to cheat in
this setting since it could sign any message on behalf of
the user.

 3. Background

A. Model and notation

We distinguish among 3 types of entities:
Ÿ Regular Users – entities who generate and

verify SAS signatures.
Ÿ Security Mediators (SEMs) –partially-trusted

entities assisting regular users in generating
SAS signatures.

Ÿ Certification Authorities (CAs) – trusted
offline entities that issue certificates and link
the identities of regular users with SEMs.
SEMs and CAs are verifiable third parties
from the users' point of view.

59

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

 All participants agree on a collision-resistant one-
way hash function family H and a digital signature
scheme. In SAS, the latter is fixed to be the RSA
scheme (Naor and Yung, 1989, Boneh et al., 2001)

SAS description

 The SAS system consists of four component
algorithms: Setup, Sign, Verify, and Renew. Setup
initializes the settings for SEMs and regular users; Sign
computes SAS signatures on given messages, which
can later be validated by running Verify. Handoff
algorithm allows a regular user to switch from one
SEM to another (Ding et al., 2001). Renew algorithm
allows a user to use new one time private keys (a hash
chain as shown below) without applying for a new
certificate.

A. Setup

 The system administrator sets up a CA and
initializes a system-wide cryptographic setting.
Specifically, the administrator selects a collision-
resistant oneway hash function H() for the users. The
choices of H() include SHA-224 and SHA-256, which
are massumed to be secure. A public key signature
scheme, which is secure against adaptive chosen
message attacks, is selected for SEMs. In order to
minimize computation overhead for regular users, the
chosen public key signature scheme should be
efficient for verifiers. (This is because, as will be seen
later, verification is done by regular users, whereas,
signing is done by much more powerful SEMs.)
Therefore, choose RSA signature scheme (Askan et al
1997,Shamir and Tauman, 2001) with a small public
exponent, such as 3 and 65,537 for SEMs.
 To become a SAS signer, Ui customizes H() into

Hui (). In essence, Hui () is a keyed hash (e.g.,
Mackenzie and Reiter, 2001) with a known key set to
the identity of the signer. Then, Ui generates a secret
random element SK0 i and chooses n as the number of
messages to sign. Starting with this value, Ui
computation is as follow:

i n-1 n
{ SK0 , SK1i ,….., Sk , SK }i i

 where
j j-1 j 0SK = H (SK) = H (SK) for 1 < j < ni ui ¡ ui i

i 1 n-1 nThe hash chain of { SK , SK ,….., Sk , SK } is called 0 i i i

Ui's key chain. Each SKj i , for 0 < j < n is Ui's j-th
(one-time) private key. It subsequently enables Ui to
produce (n-1) SAS signatures, since as shown below,

each of them will be used only once. The first value,
iSK , is referred to as U s seed private key. The last 0 i'

n
value, SK , together with n, are referred to as U root i i's

public key Pk .i

 Each SEM initializes its own secret/public RSA
key-pair (d , e) of sufficient length. (We use the sem sem

notation [x]dsem to denote SEM's signature on string
x). Each CA also has its own key-pair much like any
traditional CA. In addition to its usual role of issuing
and revoking certificates a CA also assign associations
between users and SEMs by listing SEMs in users'
certificates. Each user has a unique Registration SEM
in her home domain. Roaming users are allowed to
have associations with alternative SEMs in other
domains. One SEM serves for a multitude of users.
The number and placement of SEMs are expected in
an organizational network to closely resemble that of
OCSP Validation Agents (Vas) (Kaufmann et al.,
1995). In order to obtain a SAS certificate Cert , U i i

composes a certificate request and submits it to the
CA via some (usually off-line) channel. U s SAS i'

certificate has, for the most part, the same format as
any other public key certificate; it includes values
such as the holder's distinguished name,
organizational data, expiration/validity dates, serial
number, and so forth. Additionally, a SAS certificate
contains two other fields:

n
1. U s root public key PK , i.e < SK , n >i' i i

2. A pair of distinguished name and certificate serial
 number for each SEM associated with Ui. Once
 issued, U s SAS certificate Certi can be made i'

 publicly available via a directory service such as
 LDAP.

B. SAS signature protocol

 To get the first signature from SEM, U needs to i

register herself to her assigned SEM either off- or on-
line. In the off-line case, SEM obtains U s SAS i'

certificate via manual (local or remote) installation by
an administrator or by fetching it from the directory
service. To register on-line, U simply includes her i

SAS certificate as an optional field in the initial SAS
signature request to the SEM. Before processing the
request as described above, the SEM checks if the same
certificate is already stored. If not, it installs in the
certificate database and creates a new user entry. To
run the same protocol with an alternative SEM, U i
must run. In the initial run of the protocol, the
signature counter k is set to n-1. Both SEM and Ui

60

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

Algorithm SAS.sign (executed by User U i
and SEM)

SEM Ui
SEM

k (1) U k, Ski, m i

k dsem (2) [U k, SK] i, m i

k k dsem(3) Issue < SK , [U k, SK] > as the i i, m i

final SAS signature

Step 2. On receiving U 's request, SEM obtains Certi i

(either from the request or from local storage) and
checks its status. If revoked, SEM replies with an error
message and halts the protocol. Otherwise, SEM
compares the signature counter in the request to its
own signature counter. In case of a mismatch, SEM
replies to U with the half-signature produced in the i

last protocol run and aborts. (Note that SEM keeps a
record of all previously generated half-signatures)
Then, SEM proceeds to verify the received k-th

k
“private” key (SK) with U 's root public key in Certi. i i

kSpecifically, SEM checks that Hn-kui (SK) = PK . In i i

case of a mismatch, SEM replies to U with the last i

recorded half-signature and aborts the protocol.
 Otherwise, SEM signs the requested message with

its RSA private key d using RSASSA-PSS scheme sem

specified in Asokan et al. 1997. For simplicity, the
k dsemresult is denoted as SIG = [Cert , m, k, SK] . Other i i i

attributes may also be included in SEM's half-
signature, e.g., a timestamp. SEM decrements U 's i

signature counter, records the half-signature and
returns the latter to U .i
 In the above, SEM assures that for a given SAS

certificate exactly one signature is created for each
kSK . This property is referred to to as the SAS i

Invariant. This concept enables non-repudiation for

SAS signatures and protects users from being framed
by SEMs.

Step 3. U (who is assumed to be in possession of

SEM's certificate) verifies SEM's half-signature,
records it and decrements her signature counter. If
SEM's half-signature fails verification or its attributes
are wrong (e.g., it signs a different message than m or

includes an incorrect signature counter j ≠ k), U

aborts the protocol and concludes that a hostile attack
has occurred. In the end, U 's SAS signature on i

message m has the following format:
k

[Cert , m, k, SK] , SKi i

k-1
 The second part, namely SK is U 's half-i i

signature. As mentioned earlier, it is actually a one-
k-1 ktime signature since Hui (SK) = SK i. Note that U i i i

must use her one-time keys strictly in the reverse
order of key generation, i.e. starting from SKn-1ii,

n-2 n-3SK i, SK i and so on. In particular, U must not i i i
k-1

request a SEM half-signature using SK i unless, in the i

last protocol run, she obtained SEM's half-signature
kcontaining Sk i i

C. SAS signature verification

 SAS signature verification comes in two flavors:
light and full. The particular choice depends on the
verifier's trust model. If a verifier trusts a SEM to
honestly check user requests and verify user
certificate status, he can choose light verification.
Otherwise, he chooses full verification.

Light verification involves the following steps:
Ÿ Obtain and verify Certsem;

Ÿ Verify SEM's RSA half-signature:
k dsem

 [Cert , m, k, SK i]i i

Ÿ Verify U 's half-signature: i
k-1 k

 H (SK) = Sk i ui i i

Full verification requires, in addition:
Ÿ Verify Cert and obtain n from Cert ;i i

Ÿ Check that k < n, otherwise abort;
Ÿ Verify U root public key:i

n-k k-1 n H (SK) = Sk .ui i i

 Note that light verification does not involve
checking U 's SAS certificate. Although this may seem i

counter-intuitive, but SAS signature format (actually
SEM's half-signature) already includes Cert as i

assigned attribute. Therefore, for a verifier who trusts
the SEM, step 2 above implicitly verifies Cert . It is i

i

i

dsem k-1

i

Fig. 1: SAS signature algorithm.

61

consistently maintain the counter by decrementing it
after each run. The protocol is illustrated in Figure 1.

Step 1. U starts by sending a request containing: i
k{U ,m, k, SK } to its assigned SEM. If for privacy i i

reasons U does not wish to reveal the message to the i

SEM, m can be replaced with h(m). U may optionally i

enclose her SAS certificate.

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

Table 1
Plain RSA signature timing (ms)

Processor Key length (bits)
 1024 2048 4096 8192

Table 2
SAS Signature Timing (ms)

Processor Key length (bits)
 1024 2048 4096 8192

12490.0
3873.3
2617.5
2835.0

2143.4
2070.2
2059.6
2061.0

1741.7
562.8
377.8
401.2

322.5
302.0
377.8
401.2

252.7
85.6
55.7
58.7

52.4
46.3
45.1
45.4

40.3
14.6
9.2
9.3

13.3
9.1
8.5
8.5

PI-233MHz
PIII-500MHz
PIII 700MHz
PIV-1.2MHz

PI-233MHz
PIII-500MHz
PIII 700MHz
PIV-1.2MHz

easy to see that, owing to the trusted nature of a SEM
and the SAS Invariant, light verification is usually
sufficient. However, if a stronger property (such as
non-repudiation) is desired, full verification may be
used.

D. SAS renewal

 A renewal is needed when the messages to sign
outnumber the length of the key chain, or the states
between SEM and the user is inconsistent due to
attacks or system failures. The renewal protocol
allows a user to use a new chain of private keys
without applying for a new certificate, on the
condition that her seed private key is not
compromised. Suppose user U is currently using the i

0
hash chain seeded with SK and the SEM is expecting i

k 0SK . To shift to a new chain seeded with SK , U and i i i

SEM run the following protocol:

Step 1: In order to sign w messages in the future, U i
0

generates a new hash chain of length w + 1: SK ……. i
w 0 wSK and computes α = Hui (SK ,SK). In the i i i

protocol message, REN(U), a pre-defined macro i

message indicating U 's hash-chain renewal request; ω i
w kthe index of new root public key SK , SK is a current i i

hash token to use in the current hash chain; α serves
as a commitment to the seed private key of the old
chain and the root public key of the new chain.
 In this scheme is design to help solve majority of

the problem which is faced by smart devices. This
scheme provides a solution to the source
authentication problem under the assumption that
the sender and the receiver are loosely time
synchronized. SAS protocol has the following pro-
perties; low computation overheads, low commu-
nication overheads, if a packet arrives in time the
receiver can verify its authenticity. The two half
signatures are interdependent, so each is worthless
and of itself.

kStep 2: SEM checks the authenticity of SK) and U 's i i

certificate status as in SAS signature protocol. If the
renewal is approved, SEM returns a signature on the
request as a normal SAS signature. Meanwhile, the
state is updated so that any future SAS signature
requests using this chain will be rejected and an attack
alarm should be signaled.

Step 3: If SEM's signature in the second round is
w 0verified valid, U reveals to SEM the SK and Ski i i

4. Conclusion

 The above protocol is implemented in java and it
is run on various Speed of Pentium processors. All the
experiment was conducted over 100Mbps Ethernet
LAN in a Lab, run a number of tests with various
hardware platforms and different RSA key sizes and
also implement this protocol in Email system, where
mail will be encrypted and sent. When ready to send,
the user's SAS certificate and extracts the SEM
address. SAS-signed emails can be verified by any
S/MIME capable email client such as Netscape or
Microsoft. The result obtained after running the SAS
protocol and RSA on different Systems have been
presented.

References

Asokan, N. , Tsudik, G., and Waidner, M. (1997). Server-
 Supported Signatures. Journal of Computer Security,
 Vol. 5, No. 1.

Boneh,D., Ding,X., and Tsudik,G. ,(2001). Identity-Based
 Mediated RSA. Advances in Cryptology –CRYPTO '
 2001.

62

wStep 4: SEM checks if H (SK ,SK) equals to α ui i

received in the first round. If true, SEM replies with an
0 w

RSA signature on the SK and SK . The signature acts i i

as a special “certificate”, which, together with the
certificate from CA, are attached with U 's future SAS i

signatures.

0

i

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

Ding, X. , Mazzocchi ,D., and Tsudik, G., (2002). Exper-
 imenting with Server-Aided Signatures, in Proceedings
 of NDSS 2002.

Even ,S., Goldreich ,O., and Micali, S., (1996) . On-
 line/offline Digital Signatures. Journal of Cryptology,
 Vol. 9,No. 1, pp. 35 –67.

Goodrich, M. , Tamassia,R., and Schwerin, A., (2001).
 Implementation of an Authenticated Dictionary with
 Skip Lists and Commutative Hashing, in Proceedings of
 DARPA DISCEX II.

Goyal, V. (2004). More Efficient Server Assisted One Time
 Signatures. Available at http://eprint.iacr.org/2004/
 135

Kaufman,C., Perlman, R. , speciner ,M., (1995). Network
 Security Private Communication in a Public World.
 Prentice Hall series in Networking and Distributed
 Systems.

Lamport, L. , (1981). Password Authentication with
Insecure Communication. Communications of the ACM,
Vol. 24, pp. 770-772.

MacKenzie ,P. ,and Reiter,M. K., (2001). Networked
 Cryptographic Devices Resilient to Capture, in
 Proceedings of the 2001 IEEE Symposium on Security and
 Privacy, pp. 12 -25.

Micali, S. , (1996). Enhanced Certificate Revocation
 System, Tech. Rep. TM-542b, MIT/LCS6.

Modadugu, N. , Boneh, D. ,and Kim, M., (2001).
 Generating RSA keys on a Handheld Use an
 Untrusted Server, in RSA Conference, Cryptography
 Track 2001.

Naor, M. ,and Nissim, K. ,(1998). Certificate Evocation and
 Certificate Update, in Proceedings 7th USENIX
 Security Symposium (San Antonio, Texas).

Naor, M. , and, Yung, M. , (1989). Universal one-way Hash
 functions and their Cryptographic Applications.
 Proc.21 ACM Symp. On Theory of computing , pp. 33-
 43.

Shamir, A. , and Tauman, Y., (2001). Improved Online/
 offline Signature Schemes, in Advances in Cryptology -
 CRYPTO '2001, pp. 355-367.

63

W, Asiedu , K. O. Boateng , R. John/International Journal of Technology and Management Research 1 (2012) 57-63

