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Abstract 

Photonic crystal fibers are being designed with promising results owing to design flexibility and structure geometry. 

A four-ring structure with ring defects has been proposed. The results show that Photonic crystal fiber with the 

third ring removed has very low confinement loss of 1.17x10-4dB/km at 1.55µm, chromatic dispersion of -

69ps/km.nm at 0.75µm and zero chromatic dispersion at 0.86µm. The results also show that removing only the 

third ring reduces chromatic dispersion at shorter wavelengths than at longer wavelengths. Vectorial Finite element 

method is used for this work. The proposed fiber can be used for short and medium transmission applications. 
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1.0 Introduction 

Photonic bandgap effect came to light from the works of Yablonovitch and John (Yablonovitch, 1987) in the 

study of spontaneous emission control and confinement of light in periodic materials (Bjarklev, Broeng, & 

Bjarklev, 2012). Dielectric materials are arranged in a periodic form. If total photonic bandgap is considered, the 

frequencies obtained does not allow any propagation when the photonic crystal is infinite. Certain frequencies 

propagate, should a defect be introduced into the infinite photonic crystal. This defect could be a point defect 

which changes the periodicity in the crystal but allowing for light confinement in the area of the defect as the light 

comes from the defect. Another defect which also confines the light at the area of the defect and allow for 

propagation along the defect is the linear defect. Guiding light under the condition of linear defect can also occur 

in a two dimensional periodicity. Holes are inserted in a silica material to create a lower refractive index called the 

cladding as oppose to the core with high refractive index. Cladding which is holy, is made of two dimensionally 

periodic array of holes. Photonic crystal fiber (PCF) could be either holy core or of solid core type. The type that is 

widely used is the solid core due to its ease of fabrication. Defects can be done at the preform stage of fabrication 

with ease which makes creating defects in photonic crystal fiber of less fabrication difficulty.(d ric Zolla, 2005) 

 A paper by (Biswas et al., 2019) have proposed a circular air holes type of PCF and created a defect in the core by 

eliminating a single hole and has achieved a  chromatic dispersion of -1044ps/km.nm at a wavelength of 1.55µm 

but the work has not been extended to investigate confinement loss property. Rabiul Hasan et al (Hasan, Islam, 

Rifat, & Hasan, 2017), increased birefringence by removing two holes in a circular air hole photonic crystal fiber 

structure to create artificial defects within the core. The results indicates an ultra-high birefringence of 2.64 x 10-2 

and negative dispersion values from -242.22ps/km.nm to -762.6ps/km.nm at a wavelength of 1.3µm to 1.67µm. 

Further to this work, another research by  Lee et al (Lee, Lee, Jung, Oh, & Kim, 2016) implemented two line 

defects inside the core to obtain birefringence in the order of 10-2 with an improvement of dispersion from -

400ps/km.nm at a wavelength of 1.26µm and  a confinement loss of 10-3dB/km. In another PCF structure, tiny 

holes have been introduced into the core to create a defect (Talukder, Isti, Nuzhat, & Biswas, 2020). In all the 

research papers mentioned, the defects have been created in the core by adding or eliminating a hole. However, 

none shows the effect of a removal of one or two rings on the optical properties of the structure especially with all 

circular air holes PCF structure. Also some PCF structures with circular air holes have been replaced by elliptical 

holes in order to create some sort of defects in (Ghunawat, Chandra, & Singh, 2017; Halder & Hossain, 2016).  

In this paper a four ring PCF structure with circular air holes and three conditions of ring defect has been designed 

to achieve a very low confinement loss of 1.17x10-4dB/km at 1.55µm, chromatic dispersion of -69ps/km.nm at 

0.75µm and zero chromatic dispersion at 0.96µm is proposed. Propagation properties of the proposed PCFs have 

been analyzed using full vectorial Finite Element Method 

2.0 Methodology 

2.1 Design methodology of proposed PCF structure 

Proposed Hexagonal PCF structures; PCF1, PCF2 and PCF3’s cross-sectional view are shown in figures 1.1, 1.2 

and 1.3 respectively. The designs consist of a cladding of circular air holes and solid core. For the background 

material, silica is used, which is industrially available. The refractive index considered for the cladding is 1. The 
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proposed designs are progressive and consist of three air hole rings in PCF 1, two air hole rings in PCF 2 and PCF 

3. A perfectly matched layer has been provided to absorb radiated waves with small reflections light. This design is 

made up of four rings. All the three PCF’s have air filling fraction of d/˄=0.6. The rings are designed such that the 

pitch is kept at 2.3µm for all the PCF structures. In PCF1 the air hole radius for each hole in ring one is given by 

1.035µm and ring two except ‘a’ and ‘b’ is given by 0.8625µm. The fourth ring have holes with radii of 0.5175µm.  

The PCF structures have been designed to study the effect of the defect created by the removal of some rings. In 

PCF1 the third ring has been removed. In PCF2 the first and the second ring have been removed. Also, in PCF3 

the first, second and third ring has been replaced with one ring with a pitch of 4µm. The hole labelled ‘c’ and ‘d’ 

are given by a radii of 1.725µm and 2.07µm respectively.  

   

Figure 1.1: PCF 1 (third ring is removed) 

 

                                                   
Figure 1.2: PCF 2, first and third ring removed 

 

a b 
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Figure 1.3: PCF 3, 1st, 2nd and 3rd ring have been removed and replaced with one ring with hole-hole spacing of 4µm 

2.2 Numerical method 

The design was done using Comsol Multiphysics with perfectly matched layer (PML) boundary condition. Optical 

properties were investigated using results obtained from the simulation. The vectorial equation obtained from the 

Maxwell’s curl equation which is solved by finite Element method is given by (Bjarklev et al., 2012) shown in 

equation 1;                 

 
( )  1 2 2

0 0.................1S E k n S E−   − =        

Where, [s]-1 is an inverse matrix of [s], E is the electric field vector, [s] is the PML matrix, λ is the wavelength, k0 

=2π/λ gives the wave number in vacuum, n is the refractive index of the domain.  

SellMeier equation used (Bjarklev et al., 2012) is shown in equation 2: 
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Where n is the refractive index of the silica, λ is the wavelength in µm, B1,2,3 and C1,2,3 are sellMeier coefficients. The table 1 shows the 

sellmeier constants. 

Table 1 Values of sellmeier coefficients for 

background  silica material  

 

Parameters                                  Constants  

B1                                               0.69675 

B2                                               0.408218 

B3                                               0.890815 

C1                                               4.67914826e-3 

C2                                               1.35120631e-2 

C3                                               97.9340025 

 

 

 

 

d d 

c c 

c c 
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2.3 The Chromatic Dispersion property 

Chromatic dispersion is the sum of wavelength dispersion and material dispersion. Wavelength dispersion is a parameter that 

depends on the diameter of the photonic crystal core and the difference realized between the refractive index of the air hole cladding 

and solid core. Material dispersion on the other hand relies on the refractive index of the material is created by the interaction between 

the electrons in the material and ions. Refractive index difference between the core and the cladding influences the chromatic 

dispersion. The spacing between holes and size of the air holes can be adjusted to help obtain very useful dispersion properties. The 

equation 3 is used for the computation of the chromatic dispersion.   

2

2
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


= −


  

Where c is the velocity of light and λ the operating wavelength  

2.4 Confinement Loss   

In PCF, the mode leak from the core to the finite holes in the cladding. This occurs in-between the holes. The 

confinement loss (Closs) relates to the imaginary part of the complex effective index. Closs is shown in the equation 

4. 
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Where λ is the operating wavelength. Im(neff) is the imaginary value of the effective refractive index   

2.5 Analysis of the PCF  

The mode profile of the three photonic crystal fiber structures for x and y polarizations respectively at wavelength 

of 1550nm are shown in Figures 1.4, 1.5 and 1.6. The results show that the mode is confined well in the core 

region of the PCF1 to PCF3 in x and y polarizations. 

 

Figure 1.4a: Fundamental profile of PCF 1 at 1550nm for x- polarization 
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Figure 1.4b: Fundamental mode profile of PCF 1 at 1550nm for y-polarization 

 

Figure 1.5a: Fundamental mode profile of PCF 2 at 1550nm for x- polarization 

 

Figure 1.5b: Fundamental mode profile of PCF 2 at 1550nm for y- polarization 
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Figure 1.6a: Fundamental mode profile of PCF 3 at 1550nm for x-polarization 

 

Figure 1.6b:  Fundamental mode profile of PCF 3 at 1550 nm for y-polarization 

3.0 Results and Discussions 

3.1 Change of wavelength with respect to Effective Refractive Index 

Effective refractive index values were obtained from the simulation. The variation of refractive index with 

wavelength is shown in Figure 1.7.  The graph shows that as effective refractive index decreases, wavelength  also 

increase, which is in agreement with (Akowuah, Ademgil, & Haxha, 2012) for all the defects created. 

The graph in figure 1.7 of effective refractive index indicates that PCF 1 has the lowest refractive index of 1.39µm 

at 1550 nm wavelength. The results in figure 1.7 show that light is confined well in core region at shorter 

wavelengths. Removing the third ring only to create defect, reduced the real effective refractive index as compared 

to the case where the first and second ring are removed. Also removing entirely, the first, second and third ring 

and replacing it with the single ring with larger holes also increased the real effective part of the complex wave. 

This shows that removing the inner rings makes room for increase in the real refractive index. 
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Figure 1.7: Real effective index of all three PCF designs 
 

3.2 Change of wavelength with respect to Chromatic dispersion 

The change of chromatic dispersion with wavelength for the proposed PCFs is shown in Figure 1.8 which shows 

that chromatic dispersion increases as wavelength increases. The dispersion of 89ps/km.nm, around 100 

ps/km.nm is obtained for PCFs 2 and 3 respectively and 176 ps/nm.km for PCF 1 at 1550 nm. The chromatic 

dispersion is better for PCF2 in which the first and third ring is removed. Minimum dispersion of -140ps/km.nm 

for PCF 2, -132 ps/km.nm for PCF 3 and -69 ps/km.nm for PCF 1 is obtained at the value of 750nm. Zero 

chromatic dispersion has been obtained for all the proposed PCF structures from 0.85 to 1.1 ps/km.nm which is 

also in agreement with (Barrientos-García et al., 2016; García et al., 2015). 

 

Figure 1.8: Chromatic Dispersion of all three PCF designs 

3.3 Change of wavelength with respect to Closs 

The Closs of PCF has been calculated using the imaginary part of the complex effective refractive index. Variation 

of Closs with respect to wavelength is shown in Figure 1.9. The Closs increases with increase in wavelength. The 

1.0 1.5

-200

-100

0

100

200

C
h

ro
m

a
ti
c
 d

is
p

e
rs

io
n

 (
p

s
/k

m
.n

m
)

wavelength (m)

 pcf1 y

 pcf1 x

 pcf2 y

 pcf2x

 pcf3 x

 pcf3 y



104 
 

results show that PCF1 has the lowest confinement loss and this is attributed to the presence of more air holes 

than the rest of the PCFs since only the third ring is removed. The confinement loss in order of 10-2dB/m is 

obtained at the telecommunication wavelength of 1550 nm for PCFs 2 and 3, as shown in Figure 1.9.  PCF 1 

shows a significantly less confinement loss of less than 1.17x10-4 dB/m at 1550nm which is better than (Hasan et 

al., 2017; Islam et al., 2019; Lee et al., 2016). It is worth noting that, considering the spectral range of 750 nm to 

1500 nm, confinement loss for all the designed PCFs, gradually increases as wavelength increases. 
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Figure 1.9: Confinement loss for PCF1, PCF2 and PCF3 designs 

 

A key focus of the proposed design is to ensure the ease of fabrication. Some techniques which are being adopted 

for fabrication of PCFs are stack and draw method(Pysz et al., 2014) conventional drilling, (Ghosh, Bose, Roy, & 

Bhadra, 2015), and sol-gel casting (Bise & Trevor, 2005). The shape of the core along with the cladding is 

controlled utilizing stack and draw method and Sol-gel casting. It has been reported in (Liu, Wu, Vincent Tse, Lu, 

& Tam, 2013) and (Bise & Trevor, 2005) that complex structures of PCFs  can be fabricated utilizing stack and 

draw methods and sol-gel techniques. Circular air holes, has been employed for the proposed designs and the 

number of rings, are also less bulky with the introduction of the defects. The proposed designs can be fabricated 

using stack and draw method. 

4. Conclusion 

It has been demonstrated that ring defects affect the chromatic dispersion and confinement loss. The proposed 

fibers show low Closs and single zero chromatic dispersion for all the PCFs. The PCF 2 has given a negative 

chromatic dispersion of -140 ps/km.nm at 890nm wavelength. The PCF1 shows very low confinement loss of 

1.17x10-4dB/km at 1.55µm, chromatic dispersion of -69ps/km.nm at 0.75µm and zero chromatic dispersion at 

0.86µm which would be convenient for usage in short and medium transmission.  
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